Customizable Service Integration in
Web-enabled Environments *

Kostas Kontogiannis' and Richard Gregory?

! Department of Electrical and
Computer Engineering,
University of Waterloo

2 IBM Toronto Lab,
Toronto, Canada

Abstract. In recent years we have been experiencing a tremendous
change in software development processes, where new systems are built
by utilizing distributed, possibly heterogeneous, components. In this pa-
per, we propose an infrastructure and a meta programming environment
that allows for distributed components to be integrated, in a fully cus-
tomizable manner, into Web-enabled environments.

In particular, we propose an architecture that conforms to the event-
condition-action paradigm. A set of event-condition-action rules com-
bined with a rule enactment engine serves as a driver that determines
the transaction logic by which remote services are invoked. A proto-
type system using the proposed architecture applied to the domain of
e-commerce is also presented.

1 Introduction

Over the past decade, Web browser technology has revolutionized the way the
Internet is utilized for gathering and presenting information to users. With the
emergence of distributed object technologies and new programming languages,
the Internet is now moving from a worldwide information pool towards a service
providing facility.

The convergence of the Internet and distributed-object technologies extends
this “information-based” Internet to a worldwide “services-based” Web. This
evolution is referred to as the Internet’s second-wave, where software services
and content are distributed openly over the Internet, corporate intranets , and
extranets [1].

As the availability of data and software components on the Web increases,
services can be accessed through unique addresses and run as processes that
are dynamically executed on a server at the request of arbitrary clients. Further-
more, existing legacy systems, as well as new software systems, are conforming to
tighter requirements such as interoperability, flexibility, customizability, as busi-
ness processes are continuously reengineered. Consequently, content (data) and

* This work was funded by the IBM Canada Ltd. Laboratory - Centre for Advanced
Studies (Toronto).

software components, located virtually anywhere in the world, can be combined
on an as-required basis, thus forming collaborative information systems.

We present a system architecture where a meta integration language, en-
coded in XML, determines the manner in which existing software applications
interact. This language allows Event-Condition-Action (ECA) rules [2] to encode
the transaction logic by which processes interact. As new services are added to
the application system, or as business processes change, all that is required are
changes to the rules that encode the specific transaction logic. Moreover, these
changes require relatively little effort to implement, so the behavior of the sys-
tem can be customized to meet new requirements. This is in contrast to existing
technologies such as CORBA [3] or Enterprise JavaBeans™ [4] where consid-
erable knowledge is necessary when the interaction of distributed components
must be changed.

In this context, several issues must be addressed that relate not only to
communication between processes but also to interactions that occur between
formerly independent software applications. Also, since we cannot assume all
enterprises will adopt one single architectural standard, open communication
with other systems is a strong requirement. The work presented in this paper
provides such an open architecture, and builds on previous work presented in
[5].

This paper is structured as follows: in the next section, we highlight related
work. In Section 3 we describe the basic architecture and the system’s compo-
nents. Section 4 gives a detailed look at our proposed rule language including
a simple example. Following that, in Section 5 we describe a simple prototype
that we have implemented using Enterprise JavaBeans and WebSphere [6] by
IBM. Finally, Section 6 outlines our future plans for the project and concludes
the paper.

2 Related Work

Our system has its roots in CoopWARE [5], a generic data and control inte-
gration environment applied to the reverse engineering domain. In CoopWARE,
program coordination is also facilitated by a set of rules and an event-driven
rule execution mechanism. In this paper we extend the architecture and scope
of CoopWARE with respect to a new generic architecture modeled for Web
environments.

In [7] a generic architecture that also utilizes the Event-Condition-Action (E-
CA) framework for managing Web-based applications, is proposed. The major
difference between the work presented in [7] and this paper is that we focus most-
ly on control integration aspects (process invocation and termination) whereas
CoopWARE focuses mostly on data integration aspects, and integration of the
semantic content provided by various components in a Web-based cooperative
system. With our rule and task enactment engine, rule encoding and service
invocation are also greatly simplified.

The ToolBus [8] is a system designed to control interactions between software
components. Direct inter-tool interactions are not supported in the ToolBus and
are instead controlled by a script based on process algebra that formalizes all
the desired interactions among tools. Although service interaction is abstracted
by the process algebra, modifications must still be carried out by skilled pro-
grammers.

C3DS [9], Control and Coordination of Complex Distributed Services, is a
project whose goal is “to exploit distributed object technology to create a frame-
work for complex service provisioning.” Like our system, C3DS aims to provide
a framework where new services can be composed from existing ones, as well
as to facilitate dynamic control over service interaction. Another goal it has in
common with our own is to provide an integration environment that is suitable
for non-programmers.

Finally, Jini™ [10] Connection Technology is an evolving standard under de-
velopment by Sun Microsystems. Although it is concerned with device connec-
tion, many of the ideas, such as communication between heterogeneous systems
and ease of connection also apply to the work presented in this paper.

3 System Architecture

In this section, we describe the overall architecture of our proposed system. We
also discuss the way in which individual system components interact with each
other and with their operating environment.

Figure 1 illustrates a high-level view of our proposed system architecture. A
Web server intercepts events (for example, those that are sent at the termination
of a service) and forwards them to the rule engine. The rule engine enacts Event-
Condition-Action (ECA) scripts to determine whether a service can be invoked
(i.e. the conditions in an ECA rule are satisfied). This component is contained
within a servlet that is plugged into WebSphere and is equivalent to a monitor
process that runs in a continuous loop.

The rule engine forwards any service requests to the task enactment engine.
This component determines how the service is to be invoked based on informa-
tion provided by the service repository. The service repository relates names of
services, interface descriptions, IP addresses, ports, and URLs. A container that
is capable of deploying Enterprise JavaBeans (EJB) objects is used to invoke the
service (the container may be part of the same Web server that captured the
original event, but it would normally exist at another location). An EJB is used
to call a service that we wish to execute.

The service itself is contained within a wrapper that allows it to be used with
our system. This wrapper accepts calls from an EJB and it knows where and
how to return any events that are sent back by the service to the system. The
external environment may belong to one or more instances of our system. That
is, a single service may be be registered (recorded ed in a service repository)
with any number of service integration systems.

Internal Ervdronment

Deploys Ed

External Ervdronment

Fig. 1. The System Architecture

3.1 Web Server and Events

Events are implemented as HTTP requests that are intercepted by the Web
server and are initiated by services. Events are encoded as strings of XML-
formatted data that contain event details such as its name, type (useful when
a service is to be invoked as a result of any event of some particular class),
sender, parameter values, and any other pertinent information. This approach
was chosen since a Web server can be easily used to capture events as they are
sent across a network. A servlet plugged into the Web server can then process
these events. The implementation of the proposed prototype is built on top of
the WebSphere server developed by IBM.

In addition to capturing incoming events, WebSphere also provides an infras-
tructure that simplifies the invocation of remote services since it is capable of
deploying EJBs. These beans can dynamically load classes that contain or wrap
the desired remote services. We rely on EJBs, rather than directly loading remote
classes, since EJBs can execute remotely. These are then able to invoke other
non-Java components, such as those obtained from legacy systems that can only
run on certain platforms and operating environments. For each site containing
a service, an instance of the Web server (or, at least, an EJB container) must
exist, and for each service an EJB must be deployed.

Note that we could have used an implementation of CORBA [3] (in fact,
WebSphere provides an implementation of CORBA) or even Java servlets. How-
ever, we found that the EJBs simplify many tasks and provide a higher level of
abstraction than using an Object Request Broker (ORB). Java servlets, at the

other extreme lack many features found in EJBs such as transaction management
and persistence mechanisms.

3.2 ECA Rule Engine

At the heart of the system architecture is the component that allows for process
transaction logic to be encoded and enacted by a collection of event-condition-
action rules and a forward chaining inferencing engine. This engine is what allows
us to achieve the desired level of customizability and flexibility.

Ewvents

Service
Reguest

Boolean
Service
Rule Check

Conditions
Hold

Service
Reguest

Fig. 2. The Rule Engine Module

The rule engine is implemented as a servlet that is forwarded incoming events
by the Web server. These events may cause a number of rules to be activated.
For each rule triggered, a condition clause is checked and, if it is satisfied, the
respective rule actions (i.e. service names) are passed to the task enactment
engine and invoked (see Figure 2).

As new services are added to the system, new rules can be written to control
the invocation of these services and capture any new events they may send.
Furthermore, any changes to business processes involving existing services can
easily be reflected in the system by simply modifying or adding new rules.

The ECA rules are encoded using XML and are stored in the rule base along
with the DTD that corresponds to the rule language grammar [11]. ECA rules
are parsed by using IBM’s XML4J parser [12]. This parser also provides an API
to access the resulting DOM tree (an internal representation of the parsed XML
document, analogous to a program’s abstract syntax tree). Several tools are also

freely available to assist in composing XML documents and DTDs since XML
can be rather tedious to inscribe manually.

3.3 Services

The actions in an ECA rule typically involve invoking a service. A service is
defined informally as a method or program that relates to a process and can
run either locally or remotely. Upon completion, a service may return results to
the rule engine. The results come as parameters that are enclosed within a new
event that is sent by the service (for example, see Figure 8).

In a basic case, when a service is invoked, it may simply return a value to our
system. In more complex cases, a service may have a state and subsequent calls
to that service may require that the same instance of the service be invoked.
As an example, consider an application where there is user interaction. The
application might send an event that eventually triggers a rule that invokes one
of the application’s display methods (the display method would be a service). It
is important that the same instance of that application be invoked as the display
service and not some other instance (we want to results to come back to where
some request originated). These are described in [13] as interactive services.

In general this type of service can be any that may be invoked several times,
where each execution is dependent on earlier invocations. We use session iden-
tifiers to distinguish between events that may belong to different transactions.
We will explain these identifiers further in Section 4.5.

A typical service is the functionality that is provided by some component.
Components can often be obtained from legacy systems using reverse engineering
techniques [14] or from software modules built specifically for a given application.
Strategies and techniques to automate the decomposition and re-engineering of
legacy systems into modules for migration to network-centric environments have
been presented in [15] and [16].

Once services are identified, they can be encapsulated by a wrapper class for
use by our system. The finer the granularity of the components (i.e. the high-
er the cohesion), the more flexibility that can be provided when the individual
components are wrapped. For example, at one extreme, a legacy system can
be wrapped as a whole, thus providing a monolithic, but inflexible, service. On
the other extreme, the legacy system can be decomposed into small subsystems
that correspond to implementations of Abstract Data Types, or highly cohesive
components that deliver specific functionality. For maximum flexibility, compo-
nents (especially the ones extracted from existing legacy systems) should provide
a spectrum of related services as opposed to a single service, and have a well
defined interface with the rest of their operating environment [17].

No matter how the services are obtained (by new development or by com-
ponents extracted from legacy systems), an essential requirement is that these
services are able to exist anywhere on a network or the Internet. Usually they
run on the system where they reside and may be implemented in any program-
ming language. This is in contrast to other network-centric paradigms whereby
code is downloaded and executed on the thin-client side.

As we will see in Section 4, it is not necessary for a person composing the
rules to be concerned with the details of where the service is located, or how it
is to be invoked. It is up to the system to determine this. Also, new services may
be added to the system at any time. We are working on simplifying and even
automating the registration process. In particular, on-going work [18] involves
the design of mobile agents that locate services that are available to register
with the system, based on the type and interface description of these services. A
sample component, and its XML interface description, are illustrated in Figures3
and 4 respectively.

public Class BookItem {

private:
char* title;
char* barcode;

public:
void setTitle(char *title);
char* getTitle();
void setBarCode(char* barcode) ;
char* getBarCode();
void setAuthor(char* author);
char* getAuthor();

Fig. 3. Example Service Interfaces for the BookItem.

Services are registered with our system by adding an entry to the service
repository. This repository is used by the system to determine, in a way that is
transparent to the client processes, where services are located and how they are
to be invoked. It is also used to assist in composing new ECA rules by providing
information such as which events may appear and which services are available.
An XML DTD can optionally be registered along with any service to assist in
data integration [7] [19]. The repository is currently implemented as a static
table, but work is in progress to implement it as a built-in service that will
handle service registration events.

One advantage of the proposed architecture is that it simplifies the transac-
tion logic between diverse systems that do not use the ECA approach. A service
that integrates data represented as XML files and can be used to translate E-
CA events and parameters into a format that can be used by other systems is
presented in [19], [20]. A similar service can also translate data arriving from
other systems into ECA events. This addresses the problem of differing data
formats between related services. Since most services correspond to components
obtained from diverse legacy systems, only few will share a common data format
even though one service may be required to provide data to another service.
We believe that as standards for data interchange are developed [21], [22], these
adapters will be standardized as well.

A MY DOCUMENTS M IACNEOOKITEM. XML - M... M= E

JEILE EDIT MIEW FAYORITES ToGLS HELR

<tuml version="1.0" 7= =
- <Configuration Package="BookInStock"=
- =<Component name="BookInStock"
href="www.swen.uwaterloo.ca/BookStock">
This is a simple example.
- zInterface name="BookItem">
- <Operation name="setBarcode"
sourceClass="BookItem"=
<Parm name="bardcode"
Direction="IN" type="char *" />
<Return type="void" />
</Operation
- <Dperation name="getBarcode"
sourceClass="BookItem"=
<Return type="char *" />
</Operation=
z/Interface>
«<Class name="BookItem"
path="../component /bookitem.cpp" />
</Companent

</Configurations j
il I_'l_I
|&] Done [| Efmv compuTer 7

Fig. 4. A Sample Interface Description

4 The ECA Scripting Language

This section presents an overview of the scripting language used for modeling the
Event-Condition-Action (ECA) rules. The ECA rules are encoded in XML and
are composed of three parts as described in the following sub-sections. Other
language features are described at the end of this section. An example of a
simplified ECA rule script is illustrated in Figure 5. This sample script is taken
from an experiment that is described in Section 5.

4.1 Types and Declarations

An ECA rule is given a name attribute so that it can be distinguished from other
rules. This allows for the removal or replacement of rules at runtime and is useful
for debugging purposes. A rule begins with variable declarations consisting of an
identifier and type. Values for these are set within an event clause and can be
used in the condition and action components of the same rule. For example, in
Figure 5, the variable CustID will have it’s value set when a CheckoutCar event
is received. This value is stored in the DOM tree and will be used when the
CheckAccount service is invoked as part of the condition check. If the actions
are executed, the value will be passed to the PlaceOrder service. Although not
shown in the example, it is possible to compose complex data types to avoid
repeated use of long parameter lists. Constants may also be defined as an added
convenience.

Both complex types and constants may be defined in a global scope, in which
case they may be used in any rule contained within the script. These types and

<ECARule name="Checkout Cart">
<Declarations> <Variable identifier = "CustID">
<Type name = "Integer"/> </Variable>
<Variable identifier = "CDs">
<Type name="CDList"/></Variable></Declarations>
<Events> <EventExpr>
<Event name = "CheckoutCart">
<SetVariables>
<Identifier name "CustID"/>
<Identifier name = "CDs"/> </SetVariables>
</Event> </EventExpr> </Events>
<Conditions> <ConditionExpr> <Condition>

<Service name = "CheckItemsInStock">
<Class name = "IsItemsInStock"/>
<UseVariable> <Identifier name = "CDs"/>

</UseVariable> </Service> </Condition>
<AND/> <Condition>
<Service name = "CheckAccount">
<Class name = "IsAccountInGoodStanding"/>
<UseVariable> <Identifier name = "CustId"/>
</UseVariable> </Service>
</Condition> </ConditionExpr> </Conditions>

<Actions> <Service name = "PlaceOrder">
<Class name = "PlaceOrder'"/> <UseVariable>
<Identifier name = "CustId"/> </UseVariable>
<UseVariable>
<Identifier name = "CDs"/> </UseVariable>

</Service> </Actions> </ECARule>

Fig.5. A Sample ECA Rule.

constants may also be used by service definitions within the service repository.
Conversely, types, constants, and the service names that are declared in service
definitions may also be used within an ECA script. To disambiguate definitions,
the use of packages are employed in a manner very similar to those used in the
Java programming language.

Global variables may also be declared. These, however, may cause more
problems than the convenience they provide, since their value may be non-
deterministically set at any time by events received as part of other rules. To
avoid this problem (to some extent), we have allowed one type of global variable
that can only be set within one rule, but can still be used within other rules.
There is still a possibility of it not being defined at other points of use, but an
extra condition can be added to check this case. For in depth explanations and
examples of variable and type declarations, as well as the use of packages and
other language features, refer to [11] and [13].

4.2 Events

An event event component appears in a rule following the declarations. This is
an expression composed of named events that are separated by and or or con-
nectives. An event expression must be satisfied for a rule to be triggered. In a
simple case, such as in Figure 5, the expression consists of a single event. As
an example of a more complex case, if an event clause contained the expression
EventlV (Event2 A Event3), the rule would trigger (depending on the param-
eters received, as discussed next) when either Event2 and Event3 were received
or when FEventl was received.

An event that is received may include parameters whose values will be bound
to the respective identifiers. In the example in Figure 5, if a CheckoutCart event
is received, the first parameter value will be bound to CustID and the second
to C'Ds. Similar to function overloading, if the number and type of parameters
received does not match one event in a rule, it may match another. An event
may also have a type, which means that, if an event exists in a rule where a type
is specified instead of a name, this could also cause the rule to trigger (assuming
there is a parameter list match and any other needed events are received). This
allows rules to be triggered whenever any of a general class of events is received.

Notice that the complex example above may present a problem similar to
that of serializability in the database field. If several Event2 and Event3 events
are received, the number of times the rule will trigger depends on the order
in which those events are received. Consider the case where two FEvent2s are
received, followed by two Event3s. The rule would trigger once and, if we dis-
carded the second Event2, the rule would not trigger again until a third Event2
was received. Therefore, we keep a queue of events such that, in our example,
when the second Event3 is received, the rule will trigger for a second time (due
to an Event2 having been in the queue).

However, given that there may be different parameter values associated with
each event, there may still be different effects depending on the order of event
receipt. The combination of one of the Fvent2s with one of the Fvent3s that
triggers the rule is generally non-deterministic. This must be kept in mind when
composing ECA rules.

When a rule is triggered, it is important that all variables be bound. There-
fore, where there is an or expression, any variables that appear on the right
hand side must appear on the left hand side. Conversely, where there is an and
expression, any variables that appear on the right hand side must not appear
on the left. To allow otherwise would introduce ambiguity since variable binding
would occur twice.

4.3 Conditions

The next component of an ECA rule is the condition clause, which is a Boolean
expression using the logical connectives and, or, and not. A predicate corre-
sponds to either a service that returns a Boolean value or a test on the values

that were bound to the event parameters. In the example of Figure 5, the condi-
tions would be satisfied if the CheckItemsInStock and CheckAccount services
both returned true. The values that were received with the CheckoutCart event
will be passed to these services. Of course, more rules may be necessary to handle
the case where either of these services returns false.

Services that can be used as condition checks must be registered as such in
the service repository. This is so that the rule engine knows that the return value
belongs to the condition check and is not just another event. Boolean services
are invoked, and their values returned, in the same manner as is described in
the next section.

Another use of the condition component is to perform a check on the values of
variables. We have defined various tags that allow operators, such as equals and
greater than, to be placed between constants and variables within a condition
expression. An in-depth example of a condition component is provided in both
[11] and [13].

If the entire condition clause of a rule is satisfied, the action component of
the rule is executed as described next.

4.4 Actions

The final ECA rule component is the action component and it encodes instruc-
tions for the invocation of a sequence of remote services. The services may all be
invoked simultaneously or sequentially. Services that are named in a triggered
rule are passed to the task enactment engine which manages actual service in-
vocation.

If a service name is specified, as is the case in 5, the system will look for that
name in the service repository (it will look in the packages that are specified)
and use the recorded information such as host name and port number to call
the EJB that performs the service. Future extensions of our work would likely
employ a robust directory and naming service, such as JNDI [23], to locate the
services. If a service type is given instead of a specific name, the system will
invoke any service that matches that type.

Each service specified in the actions component may also pass the values
of variables as parameters to services. At runtime, any session identifier that
was received with an event from an interactive service (as was described in
Section 3.3, is also passed to the service, so that it can pass it back to let
the system determine the context of the result. With our current system, an
event component cannot contain an expression with events from two different
interactive services, since there can only be one session identifier.

On-going work is focusing on developing a mechanism that allows for the
localization and selection of remote services by the task enactment engine. This
can be based on criteria related to the current load of the server on which the
service is located, the communication latency, and the performance rating of the
service in terms of speed, accuracy, and cost.

4.5 Concurrency Issues

Each event that is sent to the system comes through WebSphere and this results
in a new thread of the rule engine being created. This means that more than one
rule can be active at any given time as part of different sessions. Consequently,
more than one service may be instantiated at any given time. Therefore to deal
with concurrency problems related to multiple instantiations of any given service,
we have included the concept of sessions within the ECA rule language. For
example, if service S is invoked, and we are interested in the return value from
S in another rule, we need to know whether the return value we received is the
same one we were expecting. After all, we may have received the value from
some other invocation of S.

We have solved this problem by employing session identifiers as mentioned
earlier. When an application sends an event that begins the chain of rule invoca-
tions (such as an interactive service), the rule engine includes a unique identifier
with that event’s parameters and passes it to each service that is invoked. This
is not seen in Figure 5, since it is strictly a runtime parameter. Each service that
receives a session identifier passes it back in addition to the parameters as seen
in the example. Note that these identifiers are not written into the ECA scripts,
they are added by the system at runtime.

Other concurrency issues, resulting from many services accessing the same
data resources, are effectively handled by the implementation offered by EJBs or
by the back-end services themselves (i.e. database management systems such as
UDB/DB2 Data Base Management System). For other services that do not offer
concurrency control mechanisms, such algorithms can be implemented separately
from the integration architecture proposed in this paper [24]. In particular, we
would like to maintain atomicity in all transactions that occur as a result of
service invocations. For our prototype, the atomicity, consistency, isolation, and
durability issues for the operations that result from the invocation of remote
services are addressed by the back-end services themselves, while the message
delivery guarantees are handled by the EJBs and the CORBA protocol which
provides at-most-once-semantics.

5 An E-Commerce Application Scenario

To demonstrate the applicability of the proposed system, we present its use in
deploying an e-commerce on-line system. The system implements the function-
ality offered by a virtual CD store where, users are able able to order CDs using
a Web browser. This section presents how the proposed architecture is used.
On the surface, the system is similar to many existing on-line ordering sys-
tems. A typical session may run as follows: a user connects to the CD Online
web page, enters the name of a recording artist, obtains a list of available CDs
from that artist, then selects one CD from the list. Any number of CDs may be
added to a shopping cart, and the customer can fill out an information form,
specify a payment method, and have the CDs shipped to a given address. Also

similar to many existing systems, our system is connected to a database and
other systems such as inventory and accounting.

Where our system begins to differ from familiar on-line systems is the under-
lying architecture, its rule engine, and the customizability it offers. For example,
it took only a few hours to customize the environment from another e-commerce
application for selecting and purchasing auto-parts instead of CDs [25]. Pric-
ing information, availability of goods, and special offers are all handled by the
back-end service which in our case was IBM’s Universal Database UDB/DB2.

In all cases, incoming HTTP requests are intercepted by a servlet that is
implemented also as a service. This service transforms the request into an event
and sends it to the rule engine. In the sample scenario, actions are programs
that encapsulate SQL queries. The parameter values that will be used (i.e. artist
name, song title) are those that are filled by the client as he or she fills the
on-line forms on the client machine. Note that the Web browser is an interactive
service where a new session identifier is created every time a form is submitted.

F£AUTO PARTS MART Home Page - Netscape

Fie Edt View o Communicatar Help

| AW ehe I M N
[hitp: et 1.1 iy him =] @) WhatsRelaied i

Demo Only

Welcarrie to CD Gnline. We are one of the leading corpact disk retailers in
the industry. We offer Both popular and rare album fitles as well as brand name
audio accessores

Home

- Catalogue -

- ACCessories - Please select an artist below.

- Info Center -

©Order Tracking

[Submit]

Neobjects|
FUSION.

== I [Document: Danes

Fig. 6. The Home Page

A snapshot trace of the system in operation proceeds as follows. The user
visits the virtual store Web page and selects the artist as illustrated in Fig.6.
What is sent back to the Web server when the form is submitted is an HTTP
request containing XML formatted text that is passed as an event to the rule
engine. This matches the event clause illustrated in Figure 7, which is shows the
rule as it would appear at runtime.

As a consequence, the rule in Fig.7 is activated and its corresponding action is
sent to the rule engine. The action requests a service named RequestArtistList.

<ECARule name="CDArtistQuery">
<Declarations>
<Variable identifier = "Artist">
<Type name = "String"/>
</Variable>
</Declarations>
<Events>
<EventExpr>
<Event name = "ArtistCDListRequest"
sessionld = "CDArtistQuery:10000">

<SetVariables>
<Identifier name = "Artist"
value = "Rush"/>
</SetVariables>

</Event> </EventExpr> </Events>
<Conditions> </Conditions>

<Actions>
<Service name = "RequestArtistList">
<Class name = "SQLService"
sessionID = "CDArtistQuery:10000"/>
<UseVariable>
<Identifier name = "Artist"
value = "Rush"/>
</UseVariable>
</Service>
</Actions>
</ECARule>

Fig. 7. A Query Rule at Runtime.

The sessionID field value guarantees that the specific request will be carried
out on behalf of client that initiated the request. The service request is passed
from the rule engine to the task enactment engine which invokes the service
through the appropriate EJB.

In our example, the service RequestArtistList expects a parameter that
will be formed into an SQL query. In this case, it has the value “Rush”. The
service repository will provide the server IP number and the port at which the
EJB for this service is available. Upon its completion, the service will return
a new event as shown in Figure 8. This will allow the rule engine process to
continue with the next rule. The sessionId value that was passed to the service
(CDArtistQuery:10000) will also be passed back from the service.

This new event matches the event premise of the rule illustrated in Fig.9.
In this rule, the sessionId value is assigned appropriately and the parameter
value is bound to the variable Artist. The action to be carried out in this case
is the ConvertToHMTL service which is a program that converts XML, using XSL
style sheets, to HTML. Finally, this service will send a new event (not shown,
hopefully you get the idea by now) that triggers a rule that will send the results

<Event name = "ReturnedRequestArtistList"
sessionld = "CDArtistQuery:10000">
<Param name = "Results"
type = "XMLString"
value="<Artist>Rush</Artist>
<Albums>
<Album>Moving Pictures</Album>
<Year>1981</Year>
<Album>Permanent Waves</Album>
<Year>1980</Year>
<Album>Hemispheres</Album>
<Year>1978"</Year>"
</Albums>"/>
</Event>

Fig. 8. An Event Resulting from the Completion of the RequestArtistList Service.

back to the web server so they may be passed on to the client’s Web browser.
At this point the session identifier is used to match these particular results with
the correct client (other clients may have invoked the same sequence of rules and
the rule engine may return different sets of results back to the Web server). The
resulting HTML data is displayed as shown in Figure 10.

Similar rules handle the case where more information is requested for a par-
ticular CD, or when a CD is added to a shopping cart. When an order is placed
for a set of CDs, the inventory system is notified. Should there be insufficient s-
tock of any ordered item, an event is sent from the inventory system. A rule exists
that causes the shopping cart service to modify the contents of the order so that
there will be an indication (when the order is sent to the invoicing/shipping sys-
tem) that an item was out of stock. The out-of-stock event also triggers another
rule and causes an order for the item to be placed with a supplier.

Customizable transaction business logic, purchase policies, and special offers
can all be encoded as ECA rules. Using the meta-language and our proposed
environment provides a means by which services can be invoked in a fully cus-
tomizable way.

6 Conclusion and Future Work

In this paper, we have presented a generic architecture that allows for the cus-
tomizable integration of services in Web-enabled environments. In particular,
we presented a technique for remote services to be represented and integrated
using a meta-language based on the ECA paradigm. Moreover, we presented the
task enactment engine that utilizes the ECA rules and around which the system
architecture is built. Finally, we discussed a prototype e-commerce application
which has been built using the ECA approach and the proposed architecture.

The prototype is currently being extended by our team at IBM Toronto Lab,
Center for Advanced Studies. This includes the dynamic registration of services,
the automatic generation of wrappers given service interface descriptions and fi-
nally, the run-time selection of services when there are replicated services offered
by the system.

6.1 Acknowledgments

This project could not have progressed as it did without the help of several other
individuals. In particular, we would like to thank Kelvin Cheung of the University
of Waterloo for incorporating the rule engine into the existing implementation.
We would also like to thank Evan Mamas, also of the University Waterloo, and
Jianguo Lu of the University of Toronto, for their suggestions and feedback.
We are also indebted to Teo Loo See, Daniel Tan and Daniel Wee of Nanyang
Polytechnic, Singapore, for an earlier demonstration prototype they have built
using IBM’s electronic business application framework, components of which
were adapted for the demonstration prototype presented in this paper. Finally
we would like to thank David Lauzon, Bill O’Farrell and Weidong Kou of the
IBM Toronto Lab for their support and guidance for our project.

References

1] P. Dreyfus, “The Second Wave: Netscape on Usability in the Services-Based
Internet”, IEEE Internet Computing, March/April 1998.

[2] J. Widom, S. Geri: editors “Active Data Base Systems: Triggers and Rules for
Advanced Database Processing”, Morgan Kaufmann, 1996.

[3] Object Management Group, http://www. corba.org.

[4] Sun Microsystems, Enterprise JavaBeans™ Specifications, http://java.
sun.com/products/ejb/docs.html, December 1999.

[5] J.Mylopoulos, A.Gal, K.Kontogiannis, M.Stanley, “A Generic Integration Ar-
chitecture for Cooperative Information Systems”, Proceedings COOPIS ’96,
July 1996.

[6] B.Nusbaum, et al, WebSphere Application Servers: Standard and Advanced
Editions, http://www.redbooks.ibm.com/pubs/pdfs/ redbooks/sg245460.pdf,
July 1999.

[7] A. Gal, J. Mylopoulos “Towards Web-Based Application Management Sys-
tems” in IEEE Transactions on Knowledge and Data Engineering, 2000 (to
appear).

8] J.A.Bergstra, P.Klint, The Discrete Time ToolBus.
http://adam.wins.uva.nl/"oliv- ierp/toolbus/index.html, February 1995

[9] Control and Coordination of Complex Distributed Services,
http://www.newcastle. research.ec.org/c3ds

[10] Sun Microsystems, Jini Connection Technology, http://www.sun.com/jini/

overview/index.html, Feb 2000.

[11] DTD for an ECA Scripting Language http://www.swen.uwaterloo.ca/ rwgre-
gor/thesis/ECADTD.html

[12] IBM XML Parser, http://www.alphaworks. ibm.com/formula/xml.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

21]
[22]
23]
[24]

[25]

R. Gregory, “A Customizable and Extendable Distributed Service Integra-
tion Environment”, Master’s Thesis, University of Waterloo, Department of
Electrical and Computer Engineering, October, 2000.

L. Etzkorn, C. Davis, “Automatically Identifying Reusable OO Legacy Code”,
Computer, IEEE, October, 1997.

K. Sartipi, K. Kontogiannis, F. Mavaddat, “Architectural Design Recovery Us-
ing Data Mining Techniques”,In Proceedings of IEEE Conference on Software
Maintenance and Reengineering (IEEE-CSMR’00).

K. Kontogiannis, P. Patil, “Evidence Driven Object Identification in Proce-
dural Systems”, In Proceedings of IEEE Conference on Software Technology
and Engineering Practice (IEEE-STEP’99).

H. Sneed, “Generation of Stateless Components from Procedural Programs
for Reuse in a Distributed Systems”, In Proceedings of IEEE Conference on
Software Maintenance and Reengineering, Zurich, March 2000, pp.183-188.
Y. Zou, K. Kontogiannis, “Migration and Web-Based Integration of Lega-
cy Services” to appear in Proceedings of CASCON 2000, Toronto, Ontario,
November 2000.

J. Lu, J. Mylopoulos, J. Ho, “Towards Extensible Information Brokers Based
on XML”, to appear in CAiSE*00, 12th Conference on Advanced Information
Systems Engineering, Stockholm.

A. Gal, S. Kerr, J. Mylopoulos “Information Services for the Web: Building
and Maintaining Domain Models”, International Journal of Cooperative In-
formation Systems, 8(4):227-254, 1999.

MicroSoft Corp. “BizTalk: Overview” http://www.microsoft.com/industry/
biztalk/business/highlights.stm

J. Held, C. A.T. Susch, A. Golshhan, “What Does the Future Hold for Dis-
tributed Object Computing”, StarandView Vol. 6, No.1, March 1998.

Sun Microsystems, “Java Naming and Directory Interface, Application Pro-
gramming Interface”, http://java.sun.com/products/jndi/

G. Koulouris et.al ”Distributed Systems: Concepts and Design”, Addison-
Wesley, Second Edition, 1996.

W. Ku et. al, “End-to-End E-commerce Application Development Based on
XML Tools”, in IEEE Data Engineering, Vol. 23, No. 1, pp. 29-36.

<ECARule name="CDArtistQueryResults"
<Declarations>
<Variable identifier = "Results">
<Type name = "XMLString"/>
</Variable> </Declarations>
<Events> <EventExpr>
<Event name ="ReturnedRequestArtistList"
sessionld = "CDArtistQuery:10000">
<SetVariables>
<Identifier name = "Results"
value="<Artist>Rush</Artist>
<Albums>
<Album>Moving Pictures</Album>
<Year>1981</Year>
<Album>Permanent Waves</Album>
<Year>1980</Year>
<Album>Hemispheres</Album>
<Year>1978"</Year>
</Albums>"/>
</SetVariables>
</Event> </EventExpr> </Events>
<Conditions> </Conditions>
<Actions>
<Service name = "ConvertToHTML"
<Class name = "XMLtoHTML"
sessionId = "CDArtistQuery:10000"/>
<UseVariable>
<Identifier name = "Artist"
value ="<Artist>Rush</Artist>
<Albums>
<Album>Moving Pictures</Album>
<Year>1981</Year>
<Album>Permanent Waves</Album>
<Year>1980</Year>
<Album>Hemispheres</Album>
<Year>1978</Year>
</Albums>"/>
</UseVariable>
</Service>
</Actions>
</ECARule>

Fig.9. A Query Result Rule at Runtime.

UTO PARTS MART Home Page - Netscape 1 [=]
File Edt View Go Communicator Help

i "Bookmaks i Go o itp://antT1ABMw/ebAS s amples/CdDrine /htmishome him] @7 whats Relted I

®

Demo Only

null =
IO Recording Artist: Rush
Bl Album Title: Hemispheres -
[Hemizpheres |

- Accessories -

Submit | Reset

- Info Center -

Order Tracking

& == [Doeument Done v

Fig. 10. Choosing Album Titles

