
University of Waterloo
Department of Electrical and Computer Engineering

Final Examination E&CE 355
Software Engineering Fall 2003

2:00 Sat. Dec. 13, 2003 180 minutes
Instructors: N. Young, M. Hembruch
NO ADDITIONAL MATERIAL ALLOWED
NO CALCULATORS ALLOWED

NOTES:
Answer all questions.

Guesses on two-valued questions have an expected value of zero.

Question weights are indicated in brackets [...].

Proctors and TA's are NOT allowed to answer questions. Instructors will only correct obvious typos or other
problems with the exam. They will not answer questions.

If information appears to be missing from a question, make a reasonable assumption, state your assumption, and
proceed. Do not simplify the question.

Attempt to answer questions in the space provided. If necessary, you may use the back of another page. If you do
this, please indicate it clearly.

If you separate the pages, make sure your initials are on the top of every page.

The last page includes copies of figures for questions 2, 4, 8 and 9. Tear the last page off, for quick reference. Do
not write answers on this last reference page.

Hand in all pages except possibly the last page.

NAME

Signature:

SN:

1. Software lifecycles 15

2. SDL and MSC 25

3. Real time 15

4. Design patterns 20

5. Brook's Complexity 15

6. Build tools 10

7. V&V 15

8. Cyclomatic complexity 20

9. Coverage 30

10. Integration testing 15

Total 180

1. Software lifecycles [15]
We discussed two software development lifecycles in class, waterfall and incremental.

Our guest speaker, Mauricio De Simone of Nitido, made the following statements:

Build the bones, then put on the meat.
Have a small team that puts together the bones.
Bring development muscle once the bones are in place.

a) [5] Circle “waterfall” or “incremental” indicating whether Mauricio is describing the waterfall or
incremental lifecycles. In two or three sentences, briefly explain your answer.

Waterfall Incremental

b) [10] Sketch the software development lifecycle that you circled in part (a) Label all blocks and arcs.

2. SDL and MSC [25]
a) [5] The Specification and Description (SDL) figures shown below describe a small system, S. The
five question marks (?) show where labels are missing. Complete the figures by replacing the question
marks with the correct labels.

b) [5] Complete the following table.

Number of blocks

Number of signals

Number of states
in process P

Number of inputs
in process P

Number of outputs
in process Q

Rin

[i]
? (1, 1)? (1, 1)

BLOCK BSYSTEM S

In

[?]

Out

[o]
 ?

[o]

Rout

[?]

Rx

[y]

Ry

Q1

set (t)

t

y

Q2

x

o

PROCESS Q

timer
t := 1;

P1

i

P2

y

x

y

P1

PROCESS P

c) There are at least two message sequences for the system S that produce exactly one output message
(“o”) to the environment. Complete the two Message Sequence Charts (MSC's) shown below. showing
different message sequences that produce exactly one output of the signal “o”.

3. Real time [15]
a) [3] In one or two sentences, define the term real-time requirement as we discussed it in class.

b) [12] The following table lists four software applications. Classify each application by circling “Not”,
“Soft” or “Hard”, to indicate whether the application includes real-time requirements. Explain each
answer with a sentence or two.

Application / Real time Explanation

1. Stop light, i.e., 3-coloured
traffic light (red, yellow, green)

 Not Soft Hard

2. Word processor

 Not Soft Hard

P

t

Q P

t

Q

Application / Real time Explanation

3. Missile flight surface control

 Not Soft Hard

4. Phantom Dialer PBX
program

 Not Soft Hard

4. Design patterns [20]
The following C++ code fragments show an example of a design pattern discussed in lecture.

a) [3] Name the design pattern that this b) [3] How many instances of the design pattern
example illustrates. are created during the execution of main()?

c) [5] Files (file), shared memory (shmem) and message queues (msgq) are examples of resources. List
the names of the classes to change and/or add to extend this example for a socket resource?

Classes changed Classes added

class ioPattern
{
 public:
 virtual file *newfile(String filename);
 virtual shmem *newShmem(int key);
 virtual msgq *newMsgq(int key);
}

class unixIoPattern: public
{
 public:
 unixIoPattern() {
 file *newFile(String filename)
 {
 if (fileType == 1)
 return new unixFile(filename);
 else
 return new unixPipe(filename);
 }
 shmem *newShmem(int key)
 { return new unixShmem(key); }
 ...
}

...
main()
{
 ioPattern *iof;
 #ifdef UNIX
 iof = new unixIoPattern();
 #ifdef WINDOWS
 iof = new winIoPattern();
 #elseif QNX
 iof = new qnxIoPattern();
 #endif
 file xyz = iof->newFile(“abc”);
}

d) [6] List the names of the classes that you would need to change and/or add to extend the original
example (i.e., without the socket resource) for the Apple Macintosh (“mac”) operating system?

Classes changed Classes added

e) [3] The use of the #ifdef directive shown in this example illustrates a common technique for
implementing a product family, i.e., for using the same source code to generate a similar but distinct
products for multiple different operating systems. We also discussed this technique in the lectures on
configuration management. What name did we call the different members of a product family?

5. Brooks' complexity [15]
Our guest speaker, Mauricio De Simone of Nitido, referred to Brooks' two categories of complexity.
Mauricio defined the categories as follows:

Category A: Complexity arising from our choice of tools to use in solving a problem

Category B: Complexity inherent in the problem itself

Mattias Hembruch also used the same two catgories to explain the purpose of the Requisite Skills
Package (RSP) portion of the project, where you implemented the Phantom Dialer (PhD).

a) [3] Brooks, De Simone and Hembruch used specific names for the categories. Name the categories.

Category A Category B

b) [6] On the back of the facing page, in one or two short paragraphs, explain the purpose for the
Requisite Skills Package (RSP) using Brooks' two categories. (If you don't know the specific terms,
just use “Category A” and “Category B”.)

Write answer on back of the facing page.

c) [4] Circle “agree” or “disagree”, depending on whether you agree that the RSP fulfilled its purpose
for your project team. In about two or three sentences, explain why you agree or disagree. Refer to your
project team's actual experience.

Agree Disagree

6. Build tools [10]
Assume the file, t.c, shown at right. Also,
assume the function test() in file test.c as
shown on the last page (and as mentioned again
in the cyclomatic complexity question).

a) [6] Complete the Makefile shown at right
such that it will compile the program “t” from
t.c and test.c. Use the command gcc to
compile and/or link the files. Do not assume the
use of built-in makefile rules.

b) [4] Assume t.c and test.c have been
checked into a version control system which
creates a repository file in the current directory
with a “.vc” extension (that is, test.c.vc and
t.c.vc). Assume the command “cmd update
<filename>” will retrieve the latest version of
the file. Write the additional Makefile rules to
automatically check that the working copies of
t.c and test.c are the latest version.

7. V&V [15]
a) [3] In one or two sentences, define verification.

b) [3] In one or two sentences, define validation.

/* t.c */

#include <stdlib.h>
extern void test(int a, int b);
int main(int argc, char *argv[])
{
 if(argc == 3)
 test(atoi(argv[1]), atoi(argv[2]));
}

Makefile to retrieve latest versions

Makefile to compile t

all: t

t: t.o test.o

The Cleanroom software development method emphasizes fault prevention over failure detection. All
failures of the product are traced to faults in the development process: the failed product is discarded;
the process fault is isolated and corrected. The Cleanroom method was created by Harlan Mills at IBM
Federal Systems and has been used at organizations such as NASA, Ericsson and Texas Instruments.

c) [9] The following table outlines three important aspects of the Cleanroom method. For each aspect,
provide two pieces of information. First, circle “static” or “dynamic” indicating whether the aspect
applies static or dynamic verification or validation. Second, write about two or three sentences
explaining the benefit that the aspect brings to the development process and/or product quality.

Cleanroom Benefits explanation

1. Individual developers are not
allowed to compile or run their own
modules. Each developer is responsible
for their own modules' entire syntactic
and semantic correctness, which the
developer achieves purely by
inspection.

Static Dynamic

2. Modules are specified as the
functional composition of other
modules, through the elementary
constructs of sequence, alternation and
iteration. Each module's correctness is
verified by mathematically proving
that the module implements its
specified function.

Static Dynamic

3. Completed systems are validated
through tests that are selected according
to statistical models of how the system
will be used. Features that are used
more often are tested more than
features that are used less often.

Static Dynamic

8. Cyclomatic complexity [20]
a) [12] In the space below, draw the control flow
graph for the C function, test(). Label the edges to
show which condition each edge represents. (Assume
short-circuit evaluation, i.e., the same as in class.)

b) [4] The cyclomatic complexity, V(G), can be
calculated by counting the regions of the graph. Label
the regions of the graph, R1, R2, etc., and state the
cyclomatic complexity.

V(G) =

c) [4] In addition to counting the regions of the graph,
we discussed two other methods of calculating the
cyclomatic complexity. Choose either method and
calculate the cyclomatic complexity again. Clearly
show all steps in detail, including the original
equation and variable substitutions.

V(G) =

Draw your control flow graph here, or on the back of the facing page.

 /* test() function */
 void test(int a, int b)
 {
 int i, x, y;

01 x=a*b+2;
02 y=(b+a)*5;

03 if((a<0) && (b<0)) return;

04 for(i=0;i<4;i++)
 {
05 if((a>b) && (x>a))
06 printf(“Case 1!\n”);
07 else if((b>a) && (y>b))
08 printf(“Case 2!\n”);
09 else printf(“Case 3!\n”);
10 y++;
11 x--;
 }
 }

9. Coverage [30]
Consider the C function, test(), in the previous question, and the three test cases listed in the table.

a) [20] Complete the table by listing the statements and edges covered by each of the test cases. The
first test case is done for you, as an example.

b) [5] Circle “yes” or “no”, indicating whether the set of three cases give statement coverage of the
program. If you circle “no”, write at least one statement not covered.

c) [5] Circle “yes” or “no”, indicating whether the set of three cases give edge coverage of the program.
If you circle “no”, write at least one edge not covered.

Case Statements Edges

(a = 0, b = 0) 01, 02, 03, 04,

05, 07, 09,

10, 11

a >= 0,

a <= b,

b <= a,

i < 4, i >= 4

(a = 2, b = 2)

(a = 9, b = 1)

Coverage Yes No Yes No

Not covered

10. Integration testing [15]
Our guest speaker, Mauricio De Simone of Nitido, made the following statements.

Integration is the hardest part.
Independently test layers. Divide and conquer the layers of your system.

a) [2] Define the term “integration”.

b) [6] In a short paragraph, explain why Mauricio would say “Integration is the hardest part.” Give at
least two reasons. Use the the concepts and terms we discussed in class.

c) [2] Circle “yes” or “no” indicating whether Mauricio recommends performing integration testing
separately from system testing. In one or two sentences, briefly explain your answer.

Yes No

2. SDL and MSC

 8. Cyclomatic Complexity
& 9. Coverage

4. Design patterns
class ioPattern
{
 public:
 virtual file *newfile(String filename);
 virtual shmem *newShmem(int key);
 virtual msgq *newMsgq(int key);
}

class unixIoPattern: public
{
 public:
 unixIoPattern() {
 file *newFile(String filename)
 {
 if (fileType == 1)
 return new unixFile(filename);
 else
 return new unixPipe(filename);
 }
 shmem *newShmem(int key)
 { return new unixShmem(key); }
 ...
}

...
main()
{
 ioPattern *iof;
 #ifdef UNIX
 iof = new unixIoPattern();
 #ifdef WINDOWS
 iof = new winIoPattern();
 #elseif QNX
 iof = new qnxIoPattern();
 #endif
 file xyz = iof->newFile(“abc”);
}

 /* test() function */
 void test(int a, int b)
 {
 int i, x, y;

01 x=a*b+2;
02 y=(b+a)*5;

03 if((a<0) && (b<0)) return;

04 for(i=0;i<4;i++)
 {
05 if((a>b) && (x>a))
06 printf(“Case 1!\n”);
07 else if((b>a) && (y>b))
08 printf(“Case 2!\n”);
09 else printf(“Case 3!\n”);
10 y++;
11 x--;
 }
 }

P1

i

P2

y

x

y

P1

PROCESS P

Q1

set (t)

t

y

Q2

x

o

PROCESS Q
timer
t := 1;

