
What are Success Typings and how do
they differ from Type Systems?

Kostis Sagonas
School of Electrical and Computer Engineering

National Technical University of Athens
Greece

Joint work with Tobias Lindahl (Uppsala Univerity, Sweden)

What are Success Typings and how do they differ from Type Systems?Kostis Sagonas ΕΜΠ 2006

What are types good for?

• Document programmers' intentions
– Can be used to prove properties of programs

• Detect programmer errors
– Typically, the easy to catch ones such as typos

• Help the compiler generate better code
– By avoiding runtime overheads

What are Success Typings and how do they differ from Type Systems?Kostis Sagonas ΕΜΠ 2006

What’s wrong with these functions?

g(42) → 3.14;
g(foo) → bar.

f(X) → X + 1.

What are Success Typings and how do they differ from Type Systems?Kostis Sagonas ΕΜΠ 2006

Well-typed programs never go wrong?

last([X]) → X;
last([_|T]) → last(T).

%% (integer()) → integer()
inv(X) → 1 / X.

What are Success Typings and how do they differ from Type Systems?Kostis Sagonas ΕΜΠ 2006

Dynamically typed languages

• Have only one type: term() or any()
• Some primitive functions, however, are only defined

on subtypes of this type and their arguments need
to be checked at runtime

What are Success Typings and how do they differ from Type Systems?Kostis Sagonas ΕΜΠ 2006

Dynamic typing & type safety

Type safety is provided by the runtime system
– All terms are tagged with their type, which is

checked in primitive operations
• Primitive types:

– integers, floats, atoms ('foo', 'true'), …
• Structured types:

– tuples: {'foo', 42}
– lists: [1, 2, 3]

What are Success Typings and how do they differ from Type Systems?Kostis Sagonas ΕΜΠ 2006

Experience with typing Erlang

Dialyzer - a Discrepancy Analyzer of Erlang programs
– Uses a type-based forward data-flow analysis to

find errors in Erlang code
– Managed to uncover bugs in large, well-tested

applications

Our new goal:
Design a type inference that both can be the
basis of Dialyzer's analysis and present type
signatures of Erlang functions

What are Success Typings and how do they differ from Type Systems?Kostis Sagonas ΕΜΠ 2006

Considerations

The inferred type signatures should:
– Be easy to interpret by the programmer
– Never lie: Capture all possible (however

unintended) uses of functions
The inference algorithm should:

– Be completely automatic
• No user annotations
• No type declarations

– Handle cases where not all code is available
– Be relatively fast

What are Success Typings and how do they differ from Type Systems?Kostis Sagonas ΕΜΠ 2006

An Erlang implementation of logical and

> and(true, true).
true
> and(false, true).
false
> and(false, gazonk).
false
> and(3.14, false).
false

Trial runs

and(true, true) → true;
and(false, _) → false;
and(_, false) → false.

Erlang program

bool() ::= 'true' | 'false'

What are Success Typings and how do they differ from Type Systems?Kostis Sagonas ΕΜΠ 2006

An Erlang implementation of logical and

> and(true, true).
true
> and(false, true).
false
> and(false, gazonk).
false
> and(3.14, false).
false

Trial runsHM-type signature

(bool(), bool()) → bool()

and(true, true) → true;
and(false, _) → false;
and(_, false) → false.

Erlang program

What are Success Typings and how do they differ from Type Systems?Kostis Sagonas ΕΜΠ 2006

An Erlang implementation of logical and

> and(true, true).
true
> and(false, true).
false
> and(false, gazonk).
false
> and(3.14, false).
false

Trial runs

Typing inferred by algorithm from S. Marlow and P. Wadler,
“A practical subtyping system for Erlang”

Subtyping signature

(any(), 'false') → bool()

and(true, true) → true;
and(false, _) → false;
and(_, false) → false.

Erlang program

What are Success Typings and how do they differ from Type Systems?Kostis Sagonas ΕΜΠ 2006

A quick look at inferred function domains

Dynamic typing domain

Static typing domain

Something needs to be done to
capture all of the dynamic range!

What are Success Typings and how do they differ from Type Systems?Kostis Sagonas ΕΜΠ 2006

Definition:
A success typing for a function is a type

signature, , such that whenever an
application reduces to a value , then
and .

Intuition:
If the arguments are in the domain of the function

the application might succeed, but if they do not
the application will definitely fail.

Success typings

α β
f

f p v β
p α

v

What are Success Typings and how do they differ from Type Systems?Kostis Sagonas ΕΜΠ 2006

Success typing domain

Function domains revisited

Dynamic typing domain

Static typing domain

What are Success Typings and how do they differ from Type Systems?Kostis Sagonas ΕΜΠ 2006

Success typing, subtyping and HM-types

HM-type signature

(bool(), bool()) → bool()

Subtyping signature

(any(), 'false') → bool()

Success typing

(any(), any()) → bool()

and(true, true) → true;
and(false, _) → false;
and(_, false) → false.

Erlang program

What are Success Typings and how do they differ from Type Systems?Kostis Sagonas ΕΜΠ 2006

Two sides to the story

Well-typed programs do
not go wrong!

Ill-typed programs will
surely fail!

Optimism: If we cannot
detect a type clash the
program might work.

Success typing view

Pessimism: If we cannot
prove type safety we
must reject the
program.

Static typing view

What are Success Typings and how do they differ from Type Systems?Kostis Sagonas ΕΜΠ 2006

Inferring success typings

There is a most general success typing for all
functions of a certain arity

• (any()) → any() for all functions of arity 1
• (any(), any()) → any() for all functions of arity 2
• ...

The aim of the inference algorithm is to reduce both
the domain and the range of the success typing as
much as possible without excluding any valid terms

What are Success Typings and how do they differ from Type Systems?Kostis Sagonas ΕΜΠ 2006

The inference algorithm

Constraint-based algorithm
– Constraint generation
– Constraint solving, bottom-up per SCC

Constraints are organized in disjunctions and
conjunctions of subtype constraints

Conjunctions come from straight-line code and
disjunctions come from choices (case statements)

C::= T 1 T 2 C 1 C n C 1 C n

What are Success Typings and how do they differ from Type Systems?Kostis Sagonas ΕΜΠ 2006

Some examples of inferred typings (1)

b(X) when is_integer(X) → X + 1.

bar(X) →
case b(X) of

42 → ok1;
gazonk → ok2

end.

%% (integer()) → 'ok1'

%% (integer()) → integer()

a(X) → X + 1.
%% (integer() | float()) → integer() | float()

What are Success Typings and how do they differ from Type Systems?Kostis Sagonas ΕΜΠ 2006

Some examples of inferred typings (2)

foo(X) when is_integer(X) → X + 1;
foo(X) → atom_to_list(X).

%% (integer() | atom()) → integer() | list()

gazonk(X) when is_atom(X) → X + 42.
%% (none()) → none()

What are Success Typings and how do they differ from Type Systems?Kostis Sagonas ΕΜΠ 2006

Some examples of inferred typings (3)

length_1([]) → 0;
length_1([_|T]) → length_1(T) + 1.

length_2(L) → length_3(L, 0).

length_3([], N) → N;
length_3([_|T], N) → length_3(T, N+1).

%% (list(), any()) → any()

%% (list()) → any()

%% (list()) → integer()

What are Success Typings and how do they differ from Type Systems?Kostis Sagonas ΕΜΠ 2006

Refined success typings

Definition:
Let be a function with success typing .

A refined success typing for is a typing on the
form , such that

– and , and
– For all for which the application reduces

to a value, .

f α β

α ' β'

α' α β' β
p f p
f p β'

f

What are Success Typings and how do they differ from Type Systems?Kostis Sagonas ΕΜΠ 2006

Module system to the rescue

In modern languages the module system cannot be
bypassed
– Code resides in modules
– Modules have declared interfaces (exported

functions)
Since the module system protects local functions

from arbitrary use, we can collect the types of the
parameters of all call sites of these functions

We can use this information to restrict the domains
of module-local functions

What are Success Typings and how do they differ from Type Systems?Kostis Sagonas ΕΜΠ 2006

The list example revisited

-module(my_list_utils).
-export([length_2/1]).

length_2(L) → length_3(L, 0).

length_3([], N) → N;
length_3([_|T], N) → length_3(T, N+1).

%% (list()) → integer()

%% (list(), integer()) → integer()

What are Success Typings and how do they differ from Type Systems?Kostis Sagonas ΕΜΠ 2006

Concluding remarks

Success typings:
– provide an optimistic view on type inference
– will never reject a program that does not have a

definite type clash
– capture all possible uses of functions

Current work:
– Investigate trade offs between precision and

scalability
– Allow user declarations and annotations

	What are Success Typings and how do they differ from Type Systems?
	What are types good for?
	What’s wrong with these functions?
	Well-typed programs never go wrong?
	Dynamically typed languages
	Dynamic typing & type safety
	Experience with typing Erlang
	Considerations
	An Erlang implementation of logical and
	An Erlang implementation of logical and
	An Erlang implementation of logical and
	A quick look at inferred function domains
	Success typings
	Function domains revisited
	Success typing, subtyping and HM-types
	Two sides to the story
	Inferring success typings
	The inference algorithm
	Some examples of inferred typings (1)
	Some examples of inferred typings (2)
	Some examples of inferred typings (3)
	Refined success typings
	Module system to the rescue
	The list example revisited
	Concluding remarks

