A Live Variable Analysis for
Non-higher order Languages
based on 0-CFA

Flow Analysis

Prediction of the possible values of any
expression

Prediction of the possible values of a
variable

Data flow
Control flow

Higher-order Languages and flow
analysis

e proc(x) ... (XVy) ...
 must build control flow and data flow at the
same time

e Solution: track closures and their flow
through the program

First Approach

mark each expression with a label
¢ e LAB
modify standard semantics
find every procedure call
record the call in a table as a call cache

CCache = (LAB x ENV)— Proc

%return the table

e unrealistic!

First Approach

mark each expression with a label
¢ e LAB

modify standard semantics
find every procedure call

record the call in a table call cache
CCache = (LAB @)e Pr oc

e return the table
infinite
.. domain
e unrealistic!

Another Approach

collapse context environments
collapse call caches
abstract semantics

different abstraction, different anglysis

different
precision

0-CFA

No context environment

all bindings of a given variable are
merged together

calls with distinct environments from
the same call are merged together

0-CFA
consider the CBV lambda-calculus with scalars

X e VAR

| € LAB
Ezw@a e,) |(Axe)b!

Axe, p)|b
[JIx=vlp

e
Vv
yo,

0-CFA

(x' p)V p(x)

(4'xe) p)U (2'xe))
b o)V (6" p)

(el, p)U ((ﬂ"x.e), ,0’)

(ez,p)U v
(e,[x=v]p)Uw
((91 ez)I’P)U W

0-CFA

dropping the environments
results in the creations of
abstract values

0 =(2'xe)b

0-CFA

dropping the environments
results in the creations of
abstract values

0 =(2'xe)b

and since labels
are unique

0-CFA

A\

V=/

we can use labels
as abstract values

Defining a correct analysis

e S0 an analysis can be defined as:

®:(LAB+VAR)— P\ |
* An analysis describes an environment

RO~

O]
O-[x=b'lp iff(l cd(x))A(@> p)
o |x=(1ze)pllo iff(l c@(X)A (D= p)A(@> p)

Defining a correct analysis

O ~¢' iff forall p:
if ® > pand (e' ,p)U v', then
LFE@@)

2.f V' = ((ﬂ"z.e), p’),
then (® > p')

Generating a correct analysis
based on a set of constraints

(ﬂ'x.e)e U

(Ie (D(l))EC[U]

Generating a correct analysis
based on a set of constraints

(ﬂ'x.e)eU b' eU

leo()ecClu] (led(l))eClU]

Generating a correct analysis
based on a set of constraints

(ﬂ'x.e)eU b' eU

leo()ecClu] (led(l))eClU]

X eU

(d(x)ed(l))eClU]

Generating a correct analysis
based on a set of constraints

(ﬂ'x.e)eU b' eU

leo()ecClu] (led(l))eClU]

X' eU e ezlzyeu (xfxe)eu

@()ce)<CU] |{{I call))=afl,)ca(x) <dU]

Generating a correct analysis
based on a set of constraints

(ﬂ'x.e)eU b' eU

leo()ecClu] (led(l))eClU]

X' eU e ezlzyeu (xfxe)eu

@)ce()<Cl] ([call))=afl,)cai(x) <dU]

Generating a correct analysis
based on a set of constraints

. O(nz) constraints
+ Relaxation on the rules in C|U |
e We can find the smallest correct @ in O(n3) time

A Non-higher order Language

o e=x'|b'|p'(e..e)]|if' e thene elsee,
¢ =op|New|Upd [Re f |,
-

O
only scalars
In the arrays

A Non-higher order Language

o e=x'|b'|p'(e..e)]|if' e thene elsee,
@ =0p|New|Upd |Re f | f.

A Non-higher order Language

o e=x'|b'|p'(e..e)]|if' e thene elsee,
@ =0p|New|Upd |Re f | f.

. Conf =(halted,v)|(a, p,G,K,Z)

A Non-higher order Language

o e=x'|b'|p'(e..e)]|if' e thene elsee,
@ =0p|New|Upd |Re f | f.

» Conf =(halted ,v)| (@ p,G,K,Z)

computatlon
address

A Non-higher order Language

o e=x'|b'|p'(e..e)]|if' e thene elsee,
@ =0p|New|Upd |Re f | f.

» Conf =(halted ,v)|(a, ©G,K,Z)

0\>contexts >

A Non-higher order Language

o e=x'|b'|p'(e..e)]|if' e thene elsee,
@ =0p|New|Upd |Re f | f.

+ Conf =(halted ,v)|{(a, p @ K,X)

partially reduced
expressions

A Non-higher order Language

o e=x'|b'|p'(e..e)]|if' e thene elsee,
@ =0p|New|Upd |Re f | f.

+ Conf =(halted ,v)|(a, p,G,K)Z)

A Non-higher order Language

o e=x'|b'|p'(e..e)]|if' e thene elsee,
@ =0p|New|Upd |Re f | f.

+ Conf =(halted ,v)|(a, p,G,K(Z)

A Non-higher order Language

o e=x'|b'|p'(e..e)]|if' e thene elsee,
@ =0p|New|Upd |Re f | f.

» Conf =(halted ,v)|(a, p,G,K,Z)

 the initial configuration:

(a9, o, €y, halt,)

Generating a correct analysis
based on a set of constraints

b' eU

OE®G»ECN]

Generating a correct analysis
based on a set of constraints

b' eU X eU

(led(l)eClU] (@(x)e @(1))eC[U]

Generating a correct analysis
based on a set of constraints

b' eU X eU

(led(l))eClU] (@(x)e @(1))eClU]

fi'(el'1 en'”)eU f (X, X,)=e€"

(@ll)= o,)< CI0]

Generating a correct analysis
based on a set of constraints

b' eU

(I eCD(I))e C[U]

fi'(el'1 en'“)eU f(Xg0enX)

€

II

X eU

(d(x)ed(l))eClU]

(q)(lj)Q q)(xij » eClU]

fi'(el'1 en'“)eU f (XX)

e

(@{') cll))Clu]

Generating a correct analysis
based on a set of constraints

bIEU X eU

(| cd(l)ecu] (e(x)eo())eClU]

if' e,” thene," elsee,” eU

(©(l,)u(l,)c @(1))eClU]

Defining a Live Location

1.No location is live in halt
2.islivein (a, p, R, K)iff either:
a./ occursin R, or

b. there exists x € fv(R) such that p(x)= ¢, or
c./islivein K

Defining a Sound Live Variable
Analysis

A live variableanalysis L|-|is a map from expression labels ¢
to sets of variables. L|-|is sound iff for each label ¢, L|¢]is
a set of variablessuch that for all reachablestore configurations

of theform (a, p,e’, K, Z), p(x)livein K implies x € L[/]

Set Constraints for a Sound
Variable Analysis

1. if ¢, occurs inthe context

0 ¢ (elll _____ ei—lli_l , eili , ei+1|i+1 enIn)
then for everyx e fv(e,)
x e L[]

Iff

® (x)N [L!id)(fj)j £ &, or
® (x)N [Q. eLfVJ(eC.D) (y)] + O, or

x e L[]

Set Constraints for a Sound
Variable Analysis

2. jf /. occurs In the context
if' e, thene," elsee,”
then forevery x e fv(e,)
X e L[éo]
Iff

Set Constraints for a Sound
Variable Analysis

3. if ¢, occurs in the context
if’ e, thene," elsee,"”
then forevery x e fv(e,) (i=12)
x e L[]
Iff
x e L[/]

Set Constraints for a Sound
Variable Analysis

4. if f,(Xyy,..., %,)=¢€" then for each call

Work In progress

o “Set Constraints for Destructive Array
Optimization”
Mitch Wand and Will Clinger

=

S
5

UPD — UPD!

Work In progress

o “Set Constraints for Destructive Array
Optimization”
Mitch Wand and Will Clinger
 Higher-order Languages

Work In progress

o “Set Constraints for Destructive Array
Optimization”
Mitch Wand and Will Clinger
 Higher-order Languages
« Arrays which can store any kind of value

>

T >
scalars, arrays, closures

Thank you

	A Live Variable Analysis for Non-higher order Languages based on 0-CFA
	Flow Analysis
	Higher-order Languages and flow analysis
	First Approach	
	First Approach	
	Another Approach
	0-CFA
	0-CFA
	0-CFA
	0-CFA
	0-CFA
	0-CFA
	Defining a correct analysis
	Defining a correct analysis
	Generating a correct analysis based on a set of constraints
	Generating a correct analysis based on a set of constraints
	Generating a correct analysis based on a set of constraints
	Generating a correct analysis based on a set of constraints
	Generating a correct analysis based on a set of constraints
	Generating a correct analysis based on a set of constraints
	A Non-higher order Language
	A Non-higher order Language
	A Non-higher order Language
	A Non-higher order Language
	A Non-higher order Language
	A Non-higher order Language
	A Non-higher order Language
	A Non-higher order Language
	A Non-higher order Language
	Generating a correct analysis based on a set of constraints
	Generating a correct analysis based on a set of constraints
	Generating a correct analysis based on a set of constraints
	Generating a correct analysis based on a set of constraints
	Generating a correct analysis based on a set of constraints
	Defining a Live Location
	Defining a Sound Live Variable Analysis
	Set Constraints for a Sound Variable Analysis
	Set Constraints for a Sound Variable Analysis
	Set Constraints for a Sound Variable Analysis
	Set Constraints for a Sound Variable Analysis
	Work in progress
	Work in progress
	Work in progress

